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Results are given for experiments on water-lubricated pipelining of 6.01 P cylinder 
oil in a vertical apparatus in up- and downflow in regimes of modest flow rates, less 
than 3 ft/s. Measured values of the flow rates, holdup ratios, pressure gradients and 
flow types are presented and compared with theoretical predictions based on ideal 
laminar flow and on the predictions of the linear theory of stability. New flow types, 
not achieved in horizontal flows, are observed: bamboo waves in upflow and 
corkscrew waves in downflow. Nearly perfect core-annular flows are observed in 
downflows and these are nearly optimally efficient with values close to the ideal. The 
holdup ratio in upflow and fast downflow is a constant independent of the value and 
the ratio of values of the flow rates of oil and water. A vanishing holdup ratio can be 
achieved by fluidizing a long lubricated column of oil in the downflow of water. The 
results of experiments are compared with computations from ideal theory for perfe'ct 
coreannular flow and from the linear theory of stability. Satisfactory agreements 
are achieved for the celerity and diagnosis of flow type. The wave is shown to be 
nearly stationary, convected with the oil core in this oil and all oils of relatively high 
viscosity. These results are robust with respect to moderate changes in the values of 
viscosity and surface tension. The computed wavelengths are somewhat smaller than 
the average length of the bamboo waves which are observed. This is explained by 
stretching effects of buoyancy and lubrication forces induced by the wave. Other 
points of agreement and disagreement are reviewed. 

1. Introduction 
Lubrication of oil by water in pipes appears to first have been mentioned in the 

patent application of Isaacs & Speed (1904). The density of the lubricating fluid here 
is greater than oil. They note that concentric flow may be established if a rotational 
motion is imparted to the flowing liquids by means of a rifle on the inside of the pipe. 
Their invention consists in making the fluid to be conveyed, together with a fluid of 
greater density, advance through the pipe with a helical motion, so that the denser 
fluid separates from the lighter and encases it, thus reducing the frictional resistance 
to the flow of the lighter fluid. 

This idea may perhaps be usefully reformulated as a competition between 
centripetal and gravity forces, with film lubrication when centripetal acceleration is 
dominant, and vertically stratified flow when gravity is dominant (see for example 
Chernikin 1956). When gravity is dominant, stratified flow will result. Stratified flow 
can also be lubricated because part of the pipe wall is lubricated. Looman (1916) 
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patented a method of conveying oils or similar substances through pipes by passing 
them over relatively stationary bodies of water lying a t  the bottom of the pipe, i.e. 
an array of ‘water traps’ a t  the bottom of the horizontal pipe. (Obviously there 
would be no need for a water trap if the flow was already stratified.) 

Theoretical methods are available for estimating pressure-drop reduction for 
completely stratified laminar flow. Yu & Sparrow (1967) and Charles & Redberger 
(1962) found that the ratio of the depth h of the lubricating layer to pipe radius R 
for maximum reduction is h/R = 0.4. The pressure-gradient reduction factor found 
by Yu & Sparrow is about 1.37 for liquids with a viscosity ratio greater than 1000; 
that found by Charles & Redberger (1962) was slightly smaller. Other theoretical 
studies which assume laminar flow and a flat interface are by Gemmell & Epstein 
(1962) and Ranger & Davis (1979). The experiments of Charles & Lilleleht (1966) and 
Kao & Park (1972) indicate that the ‘perfectly stratified flow’ assumed in these 
theoretical studies is stable for a t  least some of the operating conditions in their 
experiments. The discrepancies in the results of the experiments of Russell, Hodgson 
& Govier (1959) and Charles (1963) on nominally stratified flow of two immiscible 
liquids in circular pipes may be due to  instabilities of perfectly stratified flow which 
have not yet been analysed. The same cause may be at the root of the difference 
between the idealized prediction for stratified laminar flow between infinitely wide 
parallel plates by Russell & Charles (1959) and experimental data for circular pipes. 

The water in a stratified oil-water flow will tend to encapsulate the oil. This is a 
dynamic effect which is independent of the wetting properties between the liquids 
and the pipe walls. Charles & Lilleleht (1966) observed a curving of the interface in 
the ncighbourhood of the duct walls, but concluded that this is not an effect of 
primary importance except in ducts of small horizontal dimensions. Bentwich (1976) 
has considered some problems of laminar stratified flow with an eccentric interface 
in the form of a circular arc. This could be called ‘ perfect partially stratified flow ’ and 
it would be unstable under certain conditions. It is not clear whether the Bentwich 
model captures some effects of encapsulation. We shall not consider vertically 
stratified flows further here, but they are important. 

We have already noted that if the density difference between water and oil is not 
too great and if the viscosity difference is great enough, the water will automatically 
encapsulate the oil. The earliest application of this idea to the practice of pipelining 
that we could find is by Clark (1948, cited as a private communication by Russell & 
Charles 1959). 

The patent application by Clark & Shapiro (1949), who did extensive tests in a 
three mile length of 6 in. pipe, is the first that  appears to address the problem of 
core-annular flows of heavy petroleum. Here gravity effects are reduced by density 
matching to an acceptably small level and the heavy oil and water can flow in a 
lubricated manner, without stratification. 

Clark & Shapiro emphasized the method of additives and surface-active agents in 
controlling the emulsification of water into oil. This is an undesirable condition since 
the emulsion has a higher viscosity than the oil alone, and when water emulsifies into 
oil, lubrication is lost. Emulsification occurs readily in the so-called ‘light oils’ with 
viscosities less than 500 cP. Lubricated pipelining is a viable proposition for heavy 
oils, which can be defined roughly as oils whose viscosity exceeds 500cP with a 
density near to water, say po > 0.9 g cm3. 

An important series of experiments on water-lubricated pipelining, to  be referred 
to below, were carried out in Alberta, Canada by Russell & Charles (1959), Russell 
et al. (1959), Charles (1963) and, especially, by Charles, Govier & Hodgson (1961, 
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hereafter referred to as CGH). Other experiments on water lubrication in pipes 
include those of Glass (1961) who found among other things that the lowest pressure 
gradients were achieved when the water input rate was between 30 YO and 40 YO, and 
Stein (1978) and Oliemans et al. (1985). Also Shell Oil has pioneered the development 
of commercially viable pipelines. Recently Maravan of PVSA (Petroleos de Venezuela 
Sociedad Autonomia) has placed in operation a 60 km line to transport heavy crudes 
in the lubricated mode. In  general such lubricated lines become attractive when the 
lighter crudes are expensive or locally in short supply. 

Finally we draw the reader’s attention to some experiments which are indirectly 
related to water-lubricated pipelining. Shertok (1976) on flow development in a 
vertical pipe; Hasson, Man & Nir (1970) on film rupture in the pipe flow of water 
inside an annulus of slightly heavier and more viscous organic liquid; and Aul & 
Olbricht (1990) on the instability of an oil film of thickness O( 1 pm) on the wall inside 
a capillary tube of 54pm radius filled with water in an experiment is related to 
secondary oil recovery. 

Oil, being lighter than water, will rise to the top of a horizontal pipe in which both 
are flowing together. The oil can then ride high in a pipe while being lubricated by 
a film of water all around, the film being thinner at  the top than the bottom. Another 
possible arrangement occurs when the pressure gradients are not too small : the oil is 
again surrounded by a film of water but seizes parts of wall on the top where it runs 
as rivulets in the water. In some cases, there is oil at the top of pipe, with a film of 
water below it and the water completely lubricates an oil core. Ooms et al. (1984) 
developed a semi-empirical model to explain their experimental observation of a 
ripple core lubricated by water through a horizontal pipe. Data from experiments is 
required to make the model work. A later revision of this model by Oliemans et al. 
(1985) incorporates some effects of turbulence in the lubricating water. 

Purely theoretical nonlinear amplitude equations for a plane layer based on 
lubrication theory have been given by Ooms et al. (1985), and by Frenkel et al. (1987), 
Frenkel (1988) and Papageorgiou, Maldarelli & Rumschitzki (1990). Chen & Joseph 
(1991) studied nonlinear problems which could be formulated as Ginzburg-Landau 
equations. 

Since the effects of gravity destroy axisymmetry in horizontal pipes, the study of 
horizontal flow with gravity included is very difficult. None of the lubrication-based 
theories and none of the stability studies treat the asymmetric effects of gravity in 
horizontal pipes. This is a great misfortune since such effects are different and 
possibly more dangerous for lubrication in large than in small pipes, but scaling laws 
from mathematical analysis are unknown. 

The effects of gravity are important even for the lubrication of heavy crudes. The 
oil and water will stratify whenever the flow is stopped. In general, the pressure 
gradients required for restarting a line which is filled with oil above and water below 
is much greater than for steady flow. Maximum load designs therefore are associated 
with startup. These maximum loads can, it turns out, be greatly reduced by the use 
of additives in the water. It is probable that large improvements in the technology 
of water lubrication can be achieved through manipulation of the material of pipe 
construction. The general goal would be to coat the inside of pipes with hydrophillic 
materials. We are unaware of systematic studies along these lines. 

Perfect core-annular flow (PCAF) is an exact steady laminar solution of the 
problem of flow in a pipe of circular cross-section. PCAF is a rectilinear flow with one 
non-zero component of velocity that varies only with the radius coordinate. The two 
fluids are arranged centrally, one fluid in the core, the other in the annulus. This 
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solution possesses maximum symmetry. Since the effects of gravity are such as to 
destroy the axial symmetry in the problem for horizontal pipes, PCAF cannot be 
realized unless gravity is nullified by density matching as in the experiments of CGH. 
In vertical pipes of circular cross-section, the inclusion of gravity in the analysis does 
not break the axial symmetry present in the problem, and PCAF is possible without 
matching densities. 

Analysis of the stability of PCAF shows that it is stable only for a very small set 
of conditions which typically do not occur in the applications. The other, more robust 
core flows, like wavy core flow, which are well-lubricated and well-liked in the oil 
industry are very different to PCAF so that it is not clear a t  the outset that stability 
studies will have a practical application. Fortunately it turns out that the study of 
the stability of PCAF is helpful in understanding, predicting and possibly in 
controlling the different flows which arise in the applications. 

Hickox (1971) studied the linear theory of stability of PCAF in a vertical pipe with 
the long-wave approximation. All the principal physical effects ~ the viscosity ratio, 
the density ratio, the radius ratio of the interface to the pipe radius, surface tension, 
gravity and a Reynolds number - are in his governing equations. However, his 
analysis is restricted to long waves, up to first order in an expansion in powers of the 
wavenumber and only axisymmetric disturbances and disturbances with a first- 
mode azimuthal periodicity were considered. Hickox further restricted his study to  
the case in which the viscosity of the core is less than thc annulus ; water inside oil. 
He found all such flows are unstable to long waves. It is not clear why he did not 
consider the interesting case of lubricated pipelining in which the core viscosity is 
greater. This latter problem was studied by Joseph, Renardy & Renardy (1984b). 

Ooms (1971) considered the stability of core-annular flow of two ideal liquids 
through a pipe. He found that the flow undergoes capillary instabilities and 
Kelvin-Helmholtz instabilities, due to a velocity difference a t  the interface. This 
difference is suppressed by viscosity and is replaced by a discontinuity in the velocity 
gradient. The flow is unstable to short waves if surface tension is zero in both the 
viscous and inviscid cases. The instability in the inviscid case is catastrophic, 
however; the growth rate goes to infinity with the wavenumber (Hadamard 
instability). The short-wave instability which arises in the viscous case when surface 
tension is zero was discovered by Hooper & Boyd (1983) and can be called a viscous 
regularization of the Kelvin-Helmholtz instability (see the review paper by Joseph 
& Saut 1990 for a discussion). 

Preziosi, Chen & Joseph (1989, referred to hereafter as PCJ) extended the analysis 
of Joseph et al. (1984b) to include the effect of surface tension and density differences 
without gravity. They were the first to identify the lower branch of the neutral curve. 
Hu & Joseph ( 1 9 8 9 ~ )  considered the three-layer problem with an oil film on the 
inside wall of the pipe and a lubricating layer of water between the oil film and oil 
core. They introduced the idea of forming an energy budget for the wave of 
maximum growth to  identify the mechanisms of instability. Hu & Joseph (1989b) 
studied the stability of core-annular flow in a rotating pipe and Hu, Lundgren & 
Joseph (1990) studied the stability of core-annular flow for a highly viscous core. 

Gravity is neglected in the foregoing studies, but was taken into account in the 
studies of core-annular flow in vertical pipes by Smith (1989) who neglected viscosity 
stratification and surface tension, and confined his study to  long waves, and by Chen, 
Bai & Joseph (1990, referred to hereafter as CBJ) who included all effects and gave 
preliminary results of experiments reported fully here. Lin & Ibrahim (1990) studied 
a viscous liquid jet surrounded by a viscous gas in a vertical pipe in the presence of 
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gravity and interfacial tension. There is some overlap between their study and Hu 
& Joseph (1989a). 

This paper reports the results of experiments on core-annular flow in a vertical 
pipe and correlates the observations with the results of computations using ideal 
theory and the linear theory of stability. The n loop tube apparatus used in these 
experiments was described by CBJ but we will describe it in more detail in $ 2 .  The 
force of gravity is axial in this apparatus, in the direction of the pressure gradient in 
upflow and against the pressure gradient in downflow. We can account for all the 
principal physical effects in the stability study of these flows, i.e. the viscosity 
difference, the density difference, gravity, surface tension and the Reynolds number. 

The flow charts presented in this paper are the first for vertical flow and surprising 
results for the holdup ratio and the pressure-gradient reduction are reported. The 
comparison of linear theory and experiments is the most extensive one so far 
reported and we find agreement between theory and experiments in certain specific 
regimes of flow. 

2. Experimental set-up and procedures 

oil used in our experiment at  22 "C are 

(p,, y,)  = (0.995 g cm3, 

The flow system is shown in figure 1 .  The density and viscosity of the water and 

P); (p,, p,) = (0.905 g cm3, 6.01 P). (2 .1 )  

The pipeline is a n loop which is mounted on the wall with its long legs vertical, 
aligned with gravity. The flow of oil and water to the pipeline is established by the 
pressure of compressed air in the oil and water tanks. The flow rates Q, and Q, of oil 
and water are controlled by valves at the outlets of the oil and water tanks. Qw is 
measured by a rotameter and &, by a positive displacement gearmeter which is 
particularly suited to high-viscosity liquids. The oil and water are injected into the 
pipeline concentrically in an oil core and water annulus flow by means of a nozzle 
fitted centrally in the pipe. Water flows in the pipe and oil in the nozzle. Nozzles 
of different diameters were used : the 'best ' diameter depending on flow conditions. 
The flow is first pushed up against gravity in the left leg of the loop, then turns 
around at  the top of the loop and flows down in the right leg. There are test sections 
on the left and right legs which are enclosed in boxes filled with glycerine to remove 
lens distortion from the round walls of the pipe. The test section is 381 pipe diameters 
from the entrance a t  a height of 93 in. The total height of the loop is 180 in. 

The loop system is closed, i.e. the oil and water are recirculated, being stored in 
separate pressurized tanks. The pressure levels in the two tanks are adjustable and 
drive the liquids to the loop without pulses. The oil and water are ejected into a large 
tank and separated under gravity. After separation the two liquids are driven back 
into the inlet storage tanks by compressed air. 

Pressure drops are measured in the up- and downflow legs of the loop. In each leg 
there are two pressure taps connected to a manometer. The pressure taps are 
designed to facilitate the separation of oil from the water so that only water will enter 
the manometer. The pressure gradient cannot simply read off the manometer when 
there are two fluids in the pipe, and we found that 

AP = Pwgfi+(Pw-Po)gHo ( 2 . 2 )  
is the pressure drop due to motion in upflow, where H is the height of water in the 
manometer tube, H ,  the height of the oil head and g the acceleration due to gravity. 
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In downflow where the pressure gradient and relative buoyancy are opposed, the 
height difference of the manometer legs is proportional to Ap plus the hydrostatic 
contribution so that 

AP = Pw gH- (Pw - P o )  S H O .  (2.3 

We may have flow, due to relative buoyancy alone, for which H = 0. 
Formulae (2.2) and (2.3) require measured values of H and H,. The height 

difference H is read directly in the manometer but H,, depends on the volume of oil 
between the pressure taps in the pipe and it cannot be determined directly. To 
determine Ho,  we measure the volumes of oil and water between the pressure taps 
directly by means of two valves, called holdup valves, which cut off the flow between 
the taps simultaneously. There is a third safety valve which opens at the same time 
that the holdup valves are closed, releasing the high pressure in the system. After the 
holdup valves are closed, the oil rises and the volumes of oil and water are read 
easily. The distances between the holdup valves and pressure taps are 93 and 90 in. 
respectively so that the measured heights must be reduced by 90193. Since the 
diameter (d  = in.) of all pipes is the same, we may easily compute volumes by 
measuring heights. There are two sets of holdup valves, one for upflow and one for 
downflow. 

All the data taken in our experiments are recorded on our Kodak Spin Physics 
2000 Motion Analysis System or on a high-resolution video camera. The only 
quantities that can be controlled after an experiment is set-up are the flow rates of 
oil and water. We fix one of the flow rates and vary the other. Then we wait for 
transients to decay. The slower flow rates have long transients. After steady 
conditions are established, video recordings are made. The high-speed recordings 
contain the raw data for the analyses of the flow : the recording can be seen in slow 
motion ; or stopped ; or step advanced. This allows us to measure the distances, say, 
between crests of waves and their phase speed (celerity). The size and speed of slugs 
and bubbles and the correlation of flow types with operating conditions can all be 
determined from these video recordings. For this paper we were interested in flow 
type and average wavelengths and wave speeds. These are simple averages obtained 
by summing values and dividing by the number of trials. Our stored data can also 
be analysed for the spectral properties of the waves, which should be useful for 
projected studies of the nonlinear properties of wavy flow. 

To correlate the experimental observations with the linear theory of stability, we 
need to specify whether the flow is up or down, the two flow rates and the water 
fraction in the pipe. The water fraction is a functional of the solution determined by 
the holdup ratio in the manner described below. 

3. Holdup ratio in upflow and downflow 
Conventional wisdom about holdup ratios in lubricated pipelining needs to be 

amended to include effects of buoyancy in vertical pipes. The holdup ratio (3.1) is a 
ratio of ratios : the ratio of volume flow rates to the ratio of volumes. These two ratios 
would be the same, i.e. h = 1,  in a perfectly mixed flow, say a well-emulsified solution 
of water in oil. In general, and certainly in lubricated pipelining, the two fluids are 
not well-mixed and the holdup ratio differs from unity. It is generally thought that 
the liquid in contact with the pipe wall tends to be held back. Thus the holdup will 
tend to be greater than unity when the water is the component in contact with the 
pipe wall and to be less than unity when oil is in contact with the pipe wall. This is 
not correct in vertical flow where the effects of buoyancy are important. 
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Because the up- and downflow legs of our loop apparatus are connected, the 
pressure drop is established over the whole pipe with a continuous loss of pressure 
due to friction, The reader may be helped by thinking that to a first approximation 
the pressure gradient is a constant, the same constant in the up and down legs of the 
loop apparatus. Gravity aids the applied pressure gradient in accelerating the oil 
relative to water in the upflow and decelerating the oil relative to the water in the 
downflow. This means that more oil accumulates in downflow than in upflow. The 
water fraction is greater in upflow than in downflow: 

where SZ, and Q, are the volumes of oil and water respectively, V,  and V, are their 
respective superficial velocities, A ,  = nRi, A ,  = n(Ri-Ri) and R, and R, are 
respectively the mean radius of the oillwater interface and the inside radius of the 
pipe. Also, A,/A, = a2- 1 and a = R,/R,.  After replacing Q,/SZ, with a2- 1 in (3.1), 
we obtain 

(3.2) 

This formula is particularly important because experiments show that h is constant 
in upflow and fast flow. 

The value h = 0 of the holdup ratio can never be achieved in upflow or horizontal 
flow, but i t  can be realized in downflow, when there is already oil in the pipe, 
Q, =k 0, but no new oil supply is forthcoming, Q, = 0. An experimental realization of 
this in downflow is shown in figure 2 where a long oil slug with aspect ratio in excess 
of 20 is exhibited. This slug is perfectly lubricated by water. Basically we can say 
that the slug is fluidized, it is lifted by gravity against the oncoming downflow of 
water, suspended in the lubricating stream in an equilibrium of weight and drag. It 
is possible to  suspend truly large slugs with aspect ratios grcater than 100 in this way. 

I n  figure 3 we have plotted the volume ratio Q,/Q = H,/L (L  = H , + H , ) ,  where 
Q = Q,+Q, = n R ~ ( H , + H , )  is the total volume, against the input flow ratio 
QJQ, = V,/V,. We can fit the data for upflow closely to the empirical curve 

a = ( 1  + hQ,/&,)i = (1  + hVw/ t);. 

H,/L = 1-1/ (1+0.72V, /Vw) .  

Hence H,/L = 1/(1 +0.72V0/Vw) and 

(3.3) 

(3.4) 

This shows that h is constant in upflow of cylinder oil in water and is independent 
of any input ratio or flow condition. 

Figure 4 is for downflow. The data points are more scattered in down- than in 
upflow, especially for moderate input ratios. The empirical formula (3.3) which works 
for upflow does not work as well in downflow. The difference between upflow and 
downflow is more clearly expressed in figure 5 .  

One major conclusion implied by the data shown in figures 3 and 5 is that the 
holdup ratio h in upflow does not depend on the flow rates of oil and water or on the 
ratio of flow rates. The holdup ratio in downflow depends strongly on thew 
parameters, as is shown in figures 4 and 5.  These figures show that when the flow 
rates are large the effects of gravity are suppressed, as are the differences between up- 
and downflow. Hence in fast flows the holdup ratios are the same and equal to  
approximately 1.39 in both up- and downflow. This result agrees with conventional 
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FIGURE 2. Long oil slug suspended by gravity in downflow of water when the water flow rate is 
about 0.04 ft/s. The slug is fluidized, in equilibrium under weight and drag. The holdup ratio is 
zero. Transient travelling spiral waves, called corkscrews, can be seen on different segments of the 
core. It is easy to fluidize much longer slugs, even to have a continous core of oil fill the entire 
downflow pipe. 

O'; Y 

0.39 
0.55 

0 0.85 
1.12 
1.68 

A 2.80 
A V, = 0.305 ft/S 

0.607 
+ 0.909 
m 1.51 
x 2.27 



106 R. Bai, K .  Chen and D. D. Joseph 

2 

FIGURE 4. The volume ratio versus input ratio for downflow. The formula (3.3) 
is plotted. The data points are as in figure 3. 

h 

0.01 0.1 1 10 100 
V O I  v w  

FIGURE 5. Holdup ratio in downflow as a function of V,/V, with V, as a parameter. 
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wisdom, i.e. the water is being held up, but disagrees with results of CGH who found 
that in horizontal pipes, when the densities of oil and water are matched, the holdup 
ratio does depend on the input ratio and flow velocity, even a t  large flow rates. 

4. Flow types 
About six or seven qualitatively different flow regimes can be distinguished in 

experiments. There is some subjectivity involved in the delineation of differences so 
that the exact number of qualitatively different regimes may differ slightly from 
observer to observer. The flow regimes which appear in horizontal pipes under 
conditions of matched density have been already identified in the paper by CGH who 
studied concurrent flow of water and oil-carbon tetrachloride solution in a 1.04 in 
diameter pipe. Some of the different regimes observed by them were studied 
theoretically by Hu & Joseph (1989a, b )  PCJ, and CBJ. Many of the regimes of flow 
identified by CGH and some new ones, for example, bamboo waves, appear in 
vertical flow. We were not able to study the important regime in which water 
emulsifies into the oil, called ‘water droplets’ by CGH, because our apparatus is not 
strong enough to withstand the high pressure gradients generated in this condition 
in which water lubrication fails. 

In this section we shall give a qualitative description of the types of flow we 
encountered, together with illustrative photographs and a discussion of some 
underlying physical mechanisms associated with the different flow types. Different 
types of flow are associated with different regions on a flow chart whose coordinates 
may be chosen as the superficial velocities of oil and water. The disposition of the flow 
types on the flow chart is considered in $5.  

4.1. Oil bubbles in  water 
These bubbles arise from capillary instabilities in the presence of shear. Oil bubbles 
in water are produced by capillarity but the size of the bubbles is determined by 
other factors, like shear, as well. The range of sizes of the bubbles which are observed 
is fairly well predicted by the linear theory of stability using Rayleigh’s idea that the 
size of the bubble which will be observed corresponds to one-half of the length of 
maximum growth. Of course, in the present case, shear flow has a strong influence on 
the length of maximum growth. PCJ investigated this idea by comparing calculations 
from the linear theory of stability with the size of bubbles observed in the 
experiments of CGH. Their results, reported in their table 1, show good agreement. 

As a rule of thumb, we can say that we will always have oil bubbles in water if 
there is a large amount of water. Dispersions of oil in water, rather than bubbles, 
appear when the water velocity is much larger than the oil velocity. Dispersions will 
be discussed in $4.7 below. 

There is a marked difference in the distribution of bubbles in upflow and in 
downflow, even when they are of approximately the same size. In upflow the bubbles 
tend to spread and distribute themselves uniformly in the pipe. The wake interactions 
are weak because the velocity of the oil relative to the water is small. The oil is lifted 
by gravity relative t o  a forced stream of water moving in the same direction. Bubbles 
in downflow tend to aggregate. Wake forces between bubbles in downflow are much 
greater than in upflow because the bubbles are lifted against the forced stream of 
water, producing larger relative velocities and stronger wakes. 
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(4 (b) 

FIGURE 6. Oil slugs in water. (a)  Upflow. The larger bubbles are stretched out under the action of 
shear and buoyancy. This is shear stabilization of slugs and bubbles leading to long bamboo waves. 
(6) Downflow. The oil is held by buoyanry and slugs held together by wakes forming long trains. 

4.2. Slugs of oil in uuter 

If an oil bubble in water has a natural diameter larger than the pipe diameter, one 
way to get the entire volume into thc pipe is to squash the bubble into a capsule 
shape. These capsule shapes are dynamically possible because they are shear 
stabilized by water. They move through the pipe freely lubricated on all sides by 
water in a manner reminiscent of capsule transport in pneumatic tubes. 

Slugs form readily from bubble aggregates in downflow when the oil fraction is 
increased. The bubble aggregates collapse to form longer slugs which have a 
relatively large diameter lubricated by a thin layer of water. Long slugs are like 
segments of PCAF, but they support corkscrew waves. Corkscrew waves look like a 
periodically buckled wimpy rod which rotates in the water due to hydrodynamic 
torques. Corkscrew waves on a long shear stabilized slug are shown in figure 2. 

It seems to be impossible to create oapsulc slugs and corkscrew waves in upflow, 
where bubbles do not aggregate t,o form slugs as the oil input is increased. Instead 
filaments are pulled out, the bubbles are stretched, as shown in the photograph of 
figure 6, under the combined action of buoyancy and lubrication forces described in 
the caption of figure 8. This filamentation gives rise to the bamboo waves which are 
described next. 

4.3. Bamboo waves 

The shear stabilization of capillary instabilities in upflow leads to a regime of wavy 
flow in trains of sharp crests connected by long filaments. We call these bamboo 
waves. Superficially they resemble Stokes waves except that they perturb a cylinder 
and are imperfect. The filaments which connect the crests thicken as the oil velocity 
V,  is increased for a fixed V, and the average length of a wave decreases. These effects 
are evident in the photographs exhibited in figure 7. These waves are nearly 
stationary in a coordinate system moving with the undisturbed interface velocity so 
that the wave speed relative to laboratory coordinates also increases with increasing 
oil input. 
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FIGURE 7. (a) Thin and (b) thick bamboo waves. The bamboo thickens and the average length of 
a wave decreases when the oil velocity increases at  a fixed value of the water velocity. Some very 
short bamboo waves associated with high input velocities are shown in figure 9. 

FIGURE 8. Lubrication forces arise from bamboo waves which, in the first approximation, are 
connected with the oil relative to shtionary walls. The pressures which develop in the water in the 
front and back of crests are designated by + and - respectively and buoyancy of oil relative to 
water is designated by B. The pressure forces and buoyancy work together in upflow (a) where they 
lead to stretching and are opposed in downflow (b) where they lead compression and buckling. 

Bamboo waves are a very robust regime of upflow, occupying a large area in the 
upflow charts shown in figures 13-16. They seem to maintain well-defined average 
wavelengths and wave speeds, but they are imperfect. The overtaking of one crest by 
another and the transient stretching of filaments between the waves is a frequent 
occurrence. 

Bamboo waves in upflow are stretched owing to  the combined action of buoyancy 
and lubrication forces. The buoyancy part of this mechanism is simply that the oil 
is lifted by gravity relative to the heavy water which in any event is stationary on 
the pipe wall. The crest of a wave on the oil must move forward relative t o  the water. 



110 R.  Bai,  K .  Chen and D .  D. Joseph 

(4 (b) 

FIGURE 9. Disturbed bamboo waves. When the pressure gradients are much larger than buoyancy, 
the difference between upflow (a) and downflow ( b )  is suppressed. One sees short, thick-stemmed 
waves. The effects of stretching in upflow and compression in downflow are still active in producing 
longer waves in upflow. 

We have already noted that the wave is nearly stationary, convected with the oil, 
unable to  move fast on the oil core because the oil is so viscous. This means that there 
will be a positive buildup of pressure on the up side and a decrease of pressure on the 
down side of every crest in upflow, as shown in figure 8. The pressure associated with 
this lubrication effect will induce stretching in the same sense as buoyancy, 
elongating the wave, stretching the stems. On the other hand, the effects of buoyancy 
and lubrication are opposed in downflow. This tends to compress, even to eliminate, 
bamboo waves and may lead to the form of buckling which we have called corkscrew. 

4.4. Disturbed bamboo waves 
We have already mentioned that when the driving pressure gradients are relatively 
large and the flow is fast, the differences between up- and downflow vanish. I n  
particular, the asymmetric effects of buoyancy on the holdup ratio are relatively less 
important when the pressure gradients are large. This can be seen in the disturbed 
up- and downflow bamboo waves shown in figure 9. Some effects of buoyancy on the 
wavelengths are still in evidence, with waves stretched in upflow and compressed in 
downflow. At a lower speed, the upflow waves elongate and the bamboo stems thin, 
while in downflow the stems thicken into columns of oil which support perfect 
core-annular flow which is perturbed by corkscrew waves from place to place. At a 
faster speed the oil core cannot keep its integrity and various kinds of dispersions of 
oil in water and water in oil will form. 

4.5. Disturbed core-annular $ow (DCAF) and corkscrew waves 
Perfect core-annular flow (PCAF) is the basic flow whose stability was studied in the 
references mentioned in the introduction. In PCAF the core has a perfectly 
cylindrical interface of uniform radius which is perfectly centred on the pipe axis 
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FIQURE 10. Disturbed core annular flow (DCAF). Some portions of the oil column in downflow are 
nearly perfect (a) while others are buckled and rotate as a corkscrew ( b ) .  

with an annulus of lubricating water outside. Good photographs of PCAF are shown 
in figures of CBJ. Figure 10 of this paper shows PCAF disturbed by transient spiral 
waves which we call corkscrew. We call this regime of flow disturbed core-annular 
flow (DCAF). Actually, the motion of a corkscrew as it is screwed down into the cork 
is an accurate description of the waves we see. These waves are not understood by 
us but they can perhaps be likened to the buckling of a very soft rubber when loaded 
with shear traction, which in our experiments is generated by the motion of water in 
the annulus. The apparent velocity of advance of the turning corkscrew is larger than 
the superficial velocity of oil or water. When the water flow rate is fixed in the small 
to moderate range where corkscrew waves appear, the pitch of the screw will increase 
with increasing rates of flow of oil leading to an apparent slowing of the wave. I n  this 
way one can obtain nearly perfect core-annular flow. 

4.6. Oil sticks to the wall 
The glass wall of the pipe is wetted preferentially by water. However, when the water 
flow rate is small and that of oil large, oil can displace the water on the wall of the 
pipe. This usually happens first in upflow. At still higher values of the oil flow rate, 
water will disperse or emulsify into oil. This dispersion is discussed in 94.7 below. 

The deposition of oil on the pipe wall can sometimes be observed as a slow 
propagation of the wetting front with oil on the wall behind the front and water on 
the wall before the front. We call this phenomenon ‘chugging’. Two chugging 
configurations in upflow are exhibited in figure 11. To achieve chugging we increase 
the oil flow rate, keeping the water rate constant. In figures 11 (a )  and 11 (b )  an oil 
core plus oil bubbles are ejected from the sheath of oil on the wall. Evidently there 
is an annulus of water between the sheath and the core. There is a blockage when the 
oil seizes the wall which is relieved by a three-layer configuration of oil corewater 
annulus-oil sheath. Shearing forces tear away many oil bubbles which form a cloud 
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FIGURE 11. Deposition of oil on the wall. Oil seizes the hydrophillic glass wall when the oil flow rate 
is increased at a small fixed water flow rate (see ‘oil sticks to the wall’ on the flow charts in $ 5 ) .  
After the oil seizes the wall, the pipe is blocked and the blockage is relieved by an oil corewater 
annulus-oil sheath configuration. (a) A bubble cloud around an internal core. ( b )  A clearer picture 
of the ejected core. 

around an oil core in figure 1 1  ( a ) ,  more clearly seen in figure 11 ( b ) .  If the oil flow rate 
is increased further, more oil bubbles than in figure 1 1  (a) will be formed followed by 
a phase inversion in which water droplets emulsify and oil becomes the continuous 
phase. This leads to a loss of lubrication and to huge increases in the pressure 
gradient. 

The fact that oil replaces water on a hydrophillic wall under certain repeatable 
dynamical conditions is of wide interest because the complete solution of the problem 
of wetting and spreading cannot be solved by thermodynamic and generalized energy 
considerations; it is not only a problem of finding good constitutive models. The 
answer to the question ‘When two fluids flow, which one will be on the wall?’ 
depends on the history of the motion as well as the properties and interactions of the 
two fluids and the wall. 

In  figure 12 we see that oil may bc deposited or removed from the hydrophillic 
glass pipe. Joseph, Singh & Chen (1990) showed how oil could be absorbed on the 
Plexiglas wall of a Taylor apparatus at thc downflow cell boundary of a Taylor cell 
of an emulsified oil, but not elsewherc. This ‘painted’ configuration of absorption 
remains ‘forever’, even after the motion is put to rest. People who actually work for 
a living know they have to wash their hands to gct thcm clean. 

CGH found water lubrication for three different oils, 6.29, 16.8 and 65.0 cP, in a 
1.04 in. cellulose acetate-butyrate pipe which is hydrophobic. This shows that water 
lubrication is mainly a dynamical effect, with a secondary role played by wettability. 
To more fully understand this we need to consider the problem of phase inversion 
which is considered in the next subsection. Hasson et al. (1970) studied core flow of 
water in a heavier 1.02 g cm3 organic liquid (kerosene-perchlorthylene solution). 
They did not know that their flow was unstable because the organic solution has a 
higher viscosity. 
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FIGURE 12. (a) Removal of oil from the hydrophillic wall in downflow. Look a t  the bottom of the 
photograph. Oil is being removed from the wall. Slugs and bubbles are entering the oil sheath where 
they are lubricated by water. ( b )  Oil is deposited on the wall in downflow. Slugs and bubbles are 
ejected from the sheath. 

4.7. Dispersions ; phase inversion 
There is evidently a dispersion limit in which large bubbles, slugs, sheets, and other 
coherent bodies of a single fluid are broken up by forces associated with the motion. 
A dispersion of immiscible liquids, one of which is polar, the other non-polar, is often 
called an oil and water dispersion or emulsion. An emulsion is a stable dispersion, but 
stability here is defined in a time frame so that a dispersion over a long time can be 
considered an emulsion over a short time. There are water in oil (w/o) dispersions and 
oil in water dispersions (o/w), and under certain conditions one will change to the 
other. This is called a phase inversion. I t  is also possible for o/w and w/o dispersions 
to coexist. The formation of dispersions, their natural properties and phase inversion 
have been studied in different systems: CGH give some data for dispersions in 
core-annular flow of oil and water. Joseph et al. (1990) have studied dispersions of 
oil and water and dispersions of silicone and vegetable oil in a Taylor-Couette 
apparatus. 

Dispersions will always form in two immiscible liquids where their motion is 
sufficiently intense. CGH gave data for the formation of dispersions ; w/o dispersions 
were called ‘water drops in oil’ and o/w dispersions werc called ‘oil drops in water’. 
Generally a drop is heavier than the host fluid and in this sense the phrase ‘oil drops 
in water ’ is a misnomer. 

This distinction between small bubbles of oil in water and o/w dispersions can be 
fuzzy. PCJ  calculated the size of a small bubble which arose in the experiment of 
CGH on ‘oil drops in water ’. The computed size was Q the size of the largest oil bubble 
in the dispersion. The other bubbles in the dispersion were much smaller. Perhaps the 
study of the size of single drops and bubbles in different flows is fundamental in 
distinguishing between bubbles and dispersions. 
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FIGURE 13. Flow condition in upflow as a function of the superficial water (with sodium silicate) 
velocity V, = Q,/A and oil velocity V,  = &,/A. The holdup ratio is universally h = 1.39 (see figure 
5) and the value of a = R,/R, can be obtained from (3.2) for each and every point. The labelled 
circles and triangles are calculated and identified for comparison with theory in $8.  BW denotes 
bamboo waves and DBW disturbed bamboo waves. 

The o/w dispersions are a lubricated regime of flow, which is of interest since they 
burn with reduced NO, and particulate emissions. 

We could not emulsify water into oil with our apparatus. Water in oil dispersions 
has a higher viscosity than oil alone; lubrication is lost and the resulting pressure 
gradients are greater than the apparatus could withstand. The w/o dispersions have 
higher oil flow rates than that when oil seizes the wall. If we tried to increase the flow 
of oil, the pressure gradient would shoot up. If we could run the apparatus a t  the high 
pressure, a phase inversion to a w/o dispersion would probably result. The w/o 
dispersions and phase inversion from o/w dispersions are dangerous because they 
destroy lubrication. 

5. Flow charts 
A flow chart is a graph in the (V,, K)-plane in which regions of different flow types 

are designated. The holdup ratio h for each (V,, &)-point may be obtained from figure 
5 and the corresponding value of the water fraction is given by a = RJR, from (3.4). 
The determination of a for a given (V,, V,) is simplified by the fact that h = 1.38 
universally in upflow and for fast downflows. 

In  figure 13 we have plotted a chart showing the flow type of an emulsified oil of 
viscosity near 5 P in upflow of 0.4% aqueous sodium silicate solution. The flow 
condition is identified by points in the (V,, ‘V,)-plane, where V, = Q,/A is the 
superficial velocity of the water and V, is the superficial velocity of the oil; and 
A = fi;. 
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FIQURE 14. Flow chart in upflow as in figure 13 except that fresh water is used in a freshly cleaned 
pipe. There is a small upward shift probably due to a decrease in the water fraction, h = 1.39 for 
this 

0.01 0.1 1 10 

FIQURE 15. Flow condition in downflow as a function of the superficial velocities. The value of 
a = R,/R, can be determined from (3.2) when the holdup ratio h is given by experiment aa in figure 
5. Disturbance in DCAF are corkscrew waves near the slug boundary and immature bamboo waves 
near the DBW boundary. The four circles are computed points. The linear theory of stability is 
discussed in $8. 

v, (ft/s) 
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FIGURE 16. Flow chart for downflow as in figure 15 except that fresh water is used in a newly 
cleaned pipe. 

In  figure 14 we plotted a flow chart for upflow using the same oil with pure water 
in a freshly cleaned pipe. Figure 15 is a flow chart for downflow under the condition 
specified in figure 13. Figure 16 is the downflow chart using fresh water in a freshly 
cleaned pipe. 

The figures may be compared with the flow charts of CGH. The flow types are not 
the same; they did not have bamboo waves or disturbed core-annular flow with 
corkscrew waves and we could not achieve the pressure gradients necessary for 
emulsification of water into oil. Nevertheless, the interested reader will find the way 
to identify similar regimes. The regularity with which flow types fall on flow charts 
is gratifying. 

6. Pressure-drop measurements 
Data on pressure drops and holdup ratios were obtained for different flow rates of 

oil and water. We express the flow rates Q,,Q, in terms of superficial velocities 
(V,, V,) = (Q,, &,)/A in ft/s where A = and2 and d = 2R2 = $ in. Data were taken for 
seven values of V,: 0.329, 0.385, 0.554, 0.834, 1.116, 1.678, 2.803 and five values of 
V,: 0.305, 0.607, 0.909, 1.513 and 2.269. We fix V, (or V,) and take measurements for 
all V, (or V,). We measure Ap by manometer measurements using (2.2) and (2.3). The 
pressure gradient due to motion is Ap/L. We define a dimensionless pressure gradient 

@ = APIP, SL, (6.1) 

which is expressed as feet of waterlfoot. Measured values of the pressure drop us. the 
flow rate ratio with V, as a parameter are given in figure 17.  

Measured values of the pressure drop us. the flow rate ratio with V,  as a parameter 
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FIGURE 17. Dimensionless pressure gradient as a function of the input ratio for various values of 
water flow velocity V, in ft/s: (i) 2.80, (ii) 1.08, (iii) 1.12, (iv) 0.83, (v) 0.55, (vi) 0.38, (vii) 0.33. For 
each V,, 8 is an increasing function of V,, with larger increases for larger values of V, and no 
increases, even decreases, for small values of V,. (a) Upflow, ( b )  downflow. 

are given in figure 18. The reader's attention should focus on the following practical 
result : for a fixed flow rate of oil there is an optimal flow rate V, of water, with V,/V, 
between 0.2 and 0.8 in the experiments, for which 0 is minimum. This means that 
the flow rates of water and oil can be adjusted to minimize energy expenditure while 
transporting the same amount of oil. The minimum-@ point moves toward lower 
values of V,/V, as V,  is increased. Similar results for vertical air/water flows have 
been documented in figure 11.17b of the monograph by Wallis (1961). All the 
minimum points in upflow are located in regions of bamboo waves. The minimum 
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18. Dimensionless pressure gradient versus the inverse input ratio for different values of 
velocity in ft/s: (i) 0.31, (ii) 0.61, (iii) 0.91, (iv) 1.51, (v) 2.27. (a) Upflow, ( b )  downflow. 

pressure gradients fall in the region of DCAF. In this region one finds corkscrew 
waves, PCAF or nearly PCAL with disturbances in the form of immature corkscrew 
waves, or bamboo waves. 

7. Ideal and measured efficiency of water lubrication 
To assess the energy saving due to water lubrication in vertical flow, we compared 

measured values of the flow rates, holdup ratio and pressure gradients with certain 
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ideal values computed in different ways which are described below. The ideal values 
are determined by the solutions of the equation 

- P + p Z g + p z ( W " +  i / r  w') = o (7.1) 

for W = w ( r )  which holds for upflow in the region 1 = 1 of the core 0 < r < R, and the 
region I = 2 of the annulus R, < r < R, (see CBJ) when 

1=2- - P ,  d P d F  
dx dx 

is one and the same constant pressure gradient. In (7.1) W(r)  is the axial velocity of 
PCAF, and p is viscosity. 

If we think of x increasing in the same direction as gravity, we have the same 
equation (7.1) as in upflow but with velocities reversed. The equations derived below 
are for downflow, and the equations for upflow can be obtained by changing the sign 
of velocities. 

The solution of (7.1) together with appropriate boundary and interface conditions 
stated by CBJ is 

and f 2  R:aon g W2(r) = - (Ri -r2) - -  
4/42 2/42 R2' 

(7.3) 

Here fl = - P  +A g = --p'  + (P, -A)  g = -P' + (1 - s2) aon g, 

ti = - 9 + P 2 g  = -P'+(P2-Pc)g = -pr-?aoig, 

where p' is obtained from the dynamic pressure p which we measure by the method 
of $2 7 = 1 /a  and 

where p2 = pw and p1 = p,,. The I[ denote a jump at the oil-water interface. 
The oil flow rate is given by 

P c  = (1 -T2 )P2+r2P1 ,  (7.5) 

Q1 = h['rW,(r)dr 

The flow rate is given by 

R, 
Q2 = 27t / rW,(r)dr 

2R2+2R:ln'-R: . 11 = 2n { & (R! -R:)2 + - 
R2 

2 
8/42 

(7.7) 

When the only oil is in the pipe, R, = R,, Q2 = 0, fl = -pr .  When only water is in 
the pipe, R ,  = 0 and Q1 = 0, f2 = -p'. Hence in both cases 

Q = -pr/8/4 ICR:. (7.8) 
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When g = 0, the case of matched densities studied by CGH, we have 

and 

Q1 = - 1 { 1 + 2 2 ( $ - 1 ) }  p‘xR4 LL R2 
8Pl 

-p?K 
& 2 = =  (R; - Ri)2. 

(7.9) 

(7.10) 

We may define various optimization problems using these formulae. For example, 
Joseph et al. (1984b) found the water fraction, the value of R ,  such that the total 
volume flux Q1 + Qz is maximum among all the flows satisfying (7.9) and (7.10) for a 
given pressure gradient p’. Another problem is to maximize Q ,  alone under the same 
conditions. This is a payoff calculation in which the water fraction is chosen to  
maximize the throughput of oil. This problem was solved when b] g = 0 by Russell 
& Charles (1959) and their solution was derived again by Joseph, Nguyen & Beavers 
(1984a). 

The slightly more difficult case of vertical upflow is considered below. First we 
rewrite (7.6) and (7.7) in a more convenient form in which we introduce the 
superficial velocities V,  = QJxR; and Vw = Q2/nRi. Thus 

( 4 K p 2 / R i  9)  = -p’ /g  {+ q4 + 7’ -q4} + 5.11 {h (r4 -$) -q4 + 7‘- 2r4 In 7> (7.1 1)  

and (4&LLz/R;g) = - p m  (1- -2)2+~npn{712--~+4~4in~} ,  (7.12) 

where m = ,uz/,ul. Equations (7 .11)  and (7.12) each depend on two dimensionless 
parameters and the right-hand sides of both depend on one parameter p’/g@],  which 
is positive as p’ < 0, bj < 0 in our flows. The same formulae hold in upflow with 
the sign of g reversed. 

A theoretical formula for the holdup ratio can be derived from (3.1), (3.2), (7 .11)  
and (7.12): 

h = V,Hw/VwHH, 

where (7.14) 

is a dimensionless pressure gradient which can be compared with Ap/pw gL measured 
in experiments. 

The maximization problem solved by Russell & Charles (1959) is to maximize V,  
with respect to 7, for fixed p’ when b] = 0. They found that V,  is maximum when 

In our experiments 
7 = (1/2-m)i. 

m x 1/601, np] g = -0.0909 

and the oil flow-pressure gradient relation (7 .11)  for downflow becomes 

(7.15) 

where pw = 0.995, to within a small error. The same formula holds in upflow with the 
signs of V,  and Vw reversed. 
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FIGURE 19. Upflow with negative flow of water. V,  = -0.305 ft/s, V, = 0.046 ft/s. 

Exp.no. V,, 'we 7, Flow type he 0, T @L(T)  hL(T) 
1 0.305 0.554 0.53 BW 1.39 0.019 0.34 0.0013 4.18 

3 0.909 0.554 0.80 BW 1.39 0.027 0.58 0.003 3.31 
4 1.513 0.445 0.83 BW 1.39 0.052 0.72 0.016 2.53 
5 2.269 0.494 0.88 DBW 1.39 0.096 0.82 0.044 2.19 
6 0.305 0.554 0.59 DCAF 1.39 0.020 0.61 0.026 1.59 
7 0.607 0.154 0.85 DCAF 1.39 0.025 0.85 0.028 1.59 
8 0.909 0.154 0.80 DCAF 1.39 0.033 0.88 0.038 1.78 
9 1.513 0.554 0.83 DCAF 1.39 0.052 0.78 0.050 1.72 

10 2.269 0.554 0.86 DBW 1.39 0.090 0.83 0.071 1.86 

2 0.607 0.272 0.77 RW 1.39 0.020 0.56 -0.004 4.83 

EXP. no. QL(7e) VwL(7e) hL(Te) Tm(@e) b , ( @ e )  V,(@e) k ( 7 m )  @,(I) @L(O) 

1 -0.011 -0.046* -16.7 0.67 1.68 0.82 2.53 2.34 0.0095 
2 -0.00013 0.11 3.89 0.67 1.73 0.84 2.51 4.65 0.0097 
3 0.0038 0.25 2.97 0.67 2.04 1.01 2.41 6.96 0.016 
4 0.026 0.31 2.29 0.68 3.17 1.60 2.24 11.6 0.023 
5 0.062 0.31 2.11 0.69 5.16 2.61 2.141 7.4 0.031 
6 0.027 0.64 0.91 0.89 0.34 0.06 1.55 2.34 0.0095 
7 0.028 0.14 1.61 0.86 0.50 0.11 1.57 4.65 0.0084 
8 0.04 0.12 1.84 0.82 0.81 0.24 1.62 6.96 0.012 
9 0.051 0.45 1.76 0.77 1.61 0.65 1.72 11.6 0.023 

10 0.076 0.41 1.90 0.74 3.31 1.53 1.84 17.4 0.031 

TABLE 1. Comparison of experimental and ideal values in upflow (1-5) and downflow (6-10) for the 
same oil flow. V is given in ft/s. The other quantities are dimensionless. *The velocity profile for 
this case of negative Vw is shown in figure 19. 

In the first five rows of table 1 we compare experimental and ideal results for five 
cases of upflow, and in rows 6-10 for five cases of downflow. The columns of this table 
are as follows: V,, is the superficial velocity from experiments, V,, the prescribed 
water velocity, he is the holdup ratio from figure 5 ,  ye = R,,/R, is the experimental 
ratio of the mean radius of the interface to pipe radius which is computed from he, 
using (3.4), and 0, is the measured value of dimensionless pressure gradient. The case 
of negative V, for case 1 shown on the table is plotted in figure 19. We may define 
an ideal flow as PCAF satisfying (7.11) and (7.12). Then 4,  OL(r) are computed from 
(7.11) and (7.12) when (V,, V,) = (V,,, V,,) and (7.13) determines hL(r) .  OL(qe), VwL(qe) 
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Exp. no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Flow type 

BW 
BW 
BW 
BW 
DBW 
DCAF 
DCAF 
DCAF 
DCAF 
DBW 

@L(l)/@e 
122.93 
232.46 
257.88 
222.87 
180.97 
116.79 
185.97 
210.99 
222.88 
193.04 

@,(8) /@,  
0.068 

-0.20 
0.11 
0.31 
0.46 
1.30 
1.12 
0.85 
0.96 
0.79 

@ , ( V e ) / @ e  

-0.58 
-0.0065 

0.14 
0.50 
0.65 
1.35 
1.12 
1.21 
0.98 
1.07 

@L(O)/@, 

0.49 
0.49 
0.60 
0.44 
0.32 
0.47 
0.34 
0.36 
0.44 
0.35 

R V  

2481 
2599 
4226 
5656 
798 1 
2481 
2198 
307 1 
597 1 
8155 

TABLE 2. Comparison of the ratio of the ideal to the experimental pressure gradients for the same 
oil flow. The Reynolds number R, = (V,+ V,)d/v, .  When R, > R,, where R,, x 2000, the flow is 
turbulent. In the turbulent case we should replace @,(O)  with @,(O) > @,(O) because a greater 
pressure gradient is required for the same volume flux in turbulence flow. 

and hL(qe) are computed from the formulae when (7, V,) = (re, V,,) are given. The 
value 7 = 1 / 4 2  is a good approximation to the value of 7 which minimizes O(7)  
= - p ' / g p ,  for a fixed value of V,. We can prove this when is close to one by noting 
that 

~ ~ - 7 ~ -  2r4 In 7 = r6 -r4 - v4 In [I - (1 -$)I 
= 76-74 + 74(1- 7 2 )  + 0[(1-  7 y 1  

= 0 [ ( 1 - 7 2 ) 2 ] ,  (7.16) 

The result 7 = 1 / 4 2  follows from (7.15) when the second term of the right-hand side 
is zero. ~ ~ ( 8 ~ )  is the value of 7 which maximizes V,  = KL(Ge) in (7 .11)  when 8 = 8,, 
and hL(rm) is calculated from (7.13) with (7 ,O)  = (y,, Oe).  

The value O(1) is the dimensionless pressure gradient required to transport oil 
alone in the same pipe with the same oil throughput. We obtain 

@(I)  = 8V,Iuu, /gR;Pw (7.17) 
from (7.11) with 7 = 1. 

Another measure of efficiency which is used in the oil industry is to compare the 
observed pressure gradient 8, with the pressure drop 0(0) required to transport 
water alone with a volume flux Q0+, = Qo+Qw equal to the total flux. We can 
compute OL(0) for the laminar flow of water from (7.8) : 

O,(O) = - "+w '2 (laminar), 
g R ;  Pw 

(7.18) 

where V,+, = Vo+ V,, = &,+,/A can be obtained from tables. 

efficiency together with the values of the Reynolds number 
In  table 2 we show various pressure gradient ratios, which are measures of 

where d = t i n .  and pZ = lo-' P. Hence 

R, = V,+, 12(2.54)'300/8 x 2903V,+,. (7.19) 
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For R, > 2300 we should not compare 0, with 0,(0) for laminar flow. For these, we 
should compute 0,(0), the pressure gradient for turbulent flow a t  a superficial 
velocity of K+,,,, which is greater; 0,(0) = kO,(O) with k > 1. For example, k = :, to 
transport a given mass flux in turbulent flow. So as a rough measure the reader 
should reduce the number 0, (0 ) /0 ,  by 8 when R, > 2300. In  this way we may 
understand how it can happen that the pressure gradient required to drive oil plus 
water in the lubricated pipeline can be smaller than the pressure gradient required 
to drive the same flux of water alone. 

From our comparisons of ideal and measured values of the pressure gradients we 
may draw the following conclusions. 

(i) The pressure drops required to transport a given flux of oil with water 
lubrication are about 200 times less than the pressure drops required to transport the 
same flux of 601 CP oil without lubrication. In general, in vertical pipes we expect a 
reduction of the order k/m where m = ,u2/,u1 and k is a fraction, say about f. 

(ii) The pressure drops required to transport a given flux of oil and water with 
water lubrication is of the same order as, and can be even less than, the pressure drop 
necessary to  transport water alone a t  a superficial velocity V,,, corresponding to the 
total flux, provided that V,,, is such that R given by (7.19) is greater than 2300. In 
this case the pressure drop in the water alone is computed for turbulent flow. 

(iii) Bamboo waves require a much greater pressure gradient to transport a given 
volume flux of oil a t  low oil velocity and fixed water velocity than in the ideal case. 
This comparison is not interesting because its significance is diminished by the fact 
that oil is usually being transported by buoyancy. 

(iv) Disturbed core-annular flow with corkscrew waves is energy efficient, with 
pressure gradients only moderately greater, sometimes even less, than those required 
for perfect coreannular flow with the same water fraction. This shows that DCAF 
is close to PCAF. 

8. Comparison of experiments with the linear theory of stability 
We computed results from the linear theory of stability using the equations of 

CBJ. Their Reynolds number is defined as R,(R,) = W,R,/v,, where W, = gRf/v, and 
F = -p’/plg is also prescribed in the computations of CBJ. Lengths are scaled with 
R,, velocity with W, and time with Rl/W,. CBJ took 2 increasing in the direction of 
gravity so that W ( r )  in upflow in this paper is - W ( r )  in CBJ. 

We did two kinds of comparisons of theory and experiments. First, we calculated 
wavelengths and wave speeds in the regions of parameter space in which waves were 
observed and compared the calculated and measured values. Secondly, we tried to 
determine the regions of parameter space where different flow types could be found 
by analysis of the energy of the most dangerous disturbance. 

It is useful here to draw attention again to the fact that we are trying to compare 
results of a linear theory of stability of PCAF with flow types in deeply nonlinear 
rcgions of flow. There are different ways to make this comparison corresponding to 
different choices of the laminar flow which is supposed to be relevant for the 
nonlinear flow which is observed. We shall give a more precise characterization of the 
possible choices below. 

A laminar flow is determined by two parameters, say V, and V,, or V,  and 
a = l/r = R,/R,, or V, and a. For example, given V,  and V, we may compute 7 and 
p’ from (7.11) and (7.12). We may conclude that other types of flow, say bamboo 
waves, are determined by prescribing two parameters plus the flow type. We choose 

6 FLM 240 
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Experiments Computations 

Exp. no. A (cm) c (cm/s) A (cm) c (cm/s) W1) ( W s )  
1.21 
1.31 
1.41 
1.22 
1.374 
1.79 
1.34 
1 .17  
0.90 

57.70 
43.28 
35.65 
27.81 
19.16 
22.90 
28.22 
31.06 
36.25 

0.82 (0.79) 
0.92 (0.96) 
1.22 ( 1  2 2 )  
1.65 (1.33) 
1.56 ( 1  2 5 )  
1.23 (1.16) 
1.05 (1.02) 
0.95 (0.87) 
0.86 (0.79) 

79.84 (52.02) 
80.21 (42.54) 
79.76 (33.51) 
77.00 (29.42) 
58.91 (17.94) 
58.12 (22.17) 
54.80 (26.68) 
50.85 (31.33) 
49.38 (35.71) 

83.69 (55.64) 
83.73 (46.24) 
82.91 (37.26) 
79.94 (32.66) 
62.05 (20.75) 
61.69 (25.35) 
58.49 (29.95) 
54.58 (34.53) 
53.01 (39.12) 

TABLE 3. Comparison of computed and measured values of the wave speed c and wavelength A of 
bamboo waves at the flow points 1-9 of the flow chart in figure 1 3  for upflow. The speed W( 1)  of the 
undisturbed interface is also listed. The computations are for the most unstable mode. The values 
listed in the parentheses are those computed when V,, a = a, are prescribed. 

to make our comparisons for all flow types having : (i) the same oil and water inputs, 
that is V,  and V, are prescribed and equal to measured values; and (ii) the same oil 
input, V,  and the same water fraction expressed by a = a,, where a, is taken from the 
measured holdup h = he in figure 5 .  Bamboo waves trap water between the crests (sec 
figure 8) and sweep it  through the system faster than in laminar flow: less water is 
held up. Then 7, > 7 or a, < a in upflow. In downflow this trapping does not operate 
and the experimental holdup is nearly the same as the laminar one (see table 1). 

8.1. Comparison of linear theory with experiments for fixed values of V ,  and V, 
Calculations were carried out for the emulsified oil used in the experiments a t  a 
temperature of 22 "C with material parameters given by (2.1). The dimensionless 
parameters are 

m = 1/601 = 1.66 x p,/p, = 0.995/0.905 = 1.10, J* = TR,/@,v:)  = 0.102, 
(8.1) 

where T is interfacial tension and v, the oil kinematic viscosity. In our first 
comparison of linear theory with experiments, we select nine arbitrary cases of 
bamboo waves from experiments and compare observed and calculated wavelengths 
and wave speeds. Bamboo waves are imperfectly periodic but it is easy to  identify 
average values, taken as simple averages from video recordings using scaled reticle 
and automatic lapsed-timer features of SPIN PHYSICS2000. To compute wave- 
lengths and wave speed from linear theory, we need to identify the unstable wave 
of maximum growth. For this i t  is sufficient to  prescribe two values (&,,&,) = V,, 
V,) A .  Then the parameters a ,  F and R, can be computed from the PCAF formulae 
in $7; values of the oil and water volume flow rates Q, = V,A and Q,  = VwA are 
prescribed. 

8.1.1. Upjiow 
The comparison of computed and measured values of the wave speed and 

wavelength of bamboo waves for points 1-9 of figure 13 is given in table 3. The 
measured values of the wavelength are on average slightly larger than computed 
values, probably due to the nonlinear stretching associated with the lubrication and 
buoyancy effects described in figure 8. 
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The speed W( 1 )  of the undisturbed interface is on average slightly larger than the 
computed value of c. This shows that the bamboo wave is on average basically 
stationary in a frame moving with velocity W(1).  As a further check we computed 
c = 8.03 cm/s, W ( l )  = 9.84 cm/s at  point D2 on figure 13 and c = 16.96 cm/s, 
W ( l )  = 18.95 cm/s at  E2. The viscosity of the oil is too large to support any but 
slowly propagating waves, so the wave is convected with the oil. Analysis of the 
singular problem m + 0 by Hu et al. (1990) shows that c + W( 1 ) in the limit m + 0. 

The discrepancy between the computed and mcasured values of the wave speed is 
consistent with the idea that the wave is convected with the oil. The reason for the 
discrepancy can be traced to the fact that the water fraction for laminar flow with 
V,, V, prescribed is larger than the measured water fraction in upflow ; 7 < rle in the 
first five columns of table 1. Since V, is prescribed, and of the same value in laminar 
flow and bamboo waves, the oil in a core with R, < R,, must flow faster. Hence the 
speed discrepancy between c in theory and experiments is due to the reduction of the 
water fraction due to sweep-out effects of bamboo waves. 

We turn next to analysis of the equation governing the evolution of the kinetic 
energy E of the most unstable disturbance of PCAF. This may be written as 

k = I-D+B,+B2+B,, (8.2) 

where I - D  is the Reynolds stress minus the dissipation (and we normalize with 
D = l ) ,  B, is a boundary term associated with interfacial tension, B, is a boundary 
term associated with the viscosity difference which we call interfacial friction, and B, 
is a boundary term in the energy supply which is proportional to gravity times the 
jump in density. Table 4 shows that, according to the maximum growth rate 
criterion of linear theory, bamboo waves are driven by interfacial friction ; the other 
terms in the energy equation are stabilizing with very slight destabilizing effect from 
interfacial tension in experiments 4 and 5. 

Energy-budget terms for the other labelled points in the upflow chart of figure 13 
y e  displayed in table 5. In  addition, we have given the value of the wavelength 
h = 2n/& of the fastest growing wave. PCJ showet that the length of the slugs and 
bubbles which are observed correlate well with $A. We would not get this kind of 
agreement here, because the slugs are stretched and stringy due to  buoyancy and 
shear (see figure 6). We have a good agreement between theory and experiment with 
regard to selection of flow type in a sense which needs explanation. In all the entries 
the Reynolds stress term I - D  is stabilizing. Hu & Joseph ( 1 9 8 9 ~ )  showed that when 
the flow is unstable E > 0 and I - D  > 0 is destabilizing (all other terms negative), 
correlating with transitions to  w/o (water into oil) emulsions, in the experiments of 
CGH and in field tests, using privileged data. We have no budget which should lead 
to w/o dispersions and none are observed. In  every case where slugs, bubbles and o/w 
dispersions are observed, PCAF is unstable both to interfacial tension B, and 
interfacial friction B, ;  the other termsAare stabilizing. The size of the bubbles in the 
o/w dispersions is much smaller than +A and is probably associated with the breakup 
of large bubbles in shear flow. 

The energy budgets for the cases of bamboo waves and disturbed bamboo waves 
that are observed are all alike. The instability producing these waves is due to a 
strongly positive B,, with all other effects being stabilizing or a t  least only weakly 
destabilizing. Interfacial friction drives interfacial waves. 
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Points E I-D B, 4 B, n: (cm) Flow region in the chart 

A1 0.2450 -0.8982 0.4145 0.7341 -0.0060 1.5519 o/w dispersion 
B1 0.2852 -0.8791 0.2085 0.9702 -0.0148 1.7295 oil bubble 
c 1 0.3052 -0.8610 0.1362 1.0485 -0.0189 1.7833 oil bubble 

El 0.4264 -0.5353 0.0011 0.9798 -0.0141 1.4624 oil sticks on the pipe wall 
F1 0.0032 -0.9954 -0.0021 0.9978 -0.0001 0.2342 oil sticks on the pipe wall 
A2 0.2291 -0.9038 0.4840 0.6532 -0.0053 1.5268 o/w dispersion 
B2 0.2719 -0.8862 0.2387 0.9331 -0.0143 1.7116 oil bubble 
C2 0.3424 -0.8050 0.0909 1.0806 -0.0243 1.9188 oil slug 

D1 0.4116 -0.6853 0.0388 0.0816 -0.0237 1.8341 BW/slug 

D2 0.4566 -0.5449 0.0167 1.0068 -0.0220 1.7690 BW 
E2 0.2814 -0.6791 -0.0120 0.9799 -0.0075 1.1267 BW 
F2 0.0552 -0.9261 -0.0115 0.9968 -0.0001 0.2604 oil sticks on the pipe wall 
A3 0.0742 -0.9778 1.1728 -0.1204 -0.0012 1.0009 o/w dispersion 
B3 0.1353 -0.9530 0.7341 0.3618 -0.0084 1.3061 o/w dispersion 
C3 0.2721 -0.8208 0.1095 1.0203 -0.0373 2.1226 oil bubble 
D3 0.2983 -0.7031 0.0221 1.0022 -0.0231 1.6892 oil slug 
E3 0.2457 -0.7436 0.0030 0.9980 -0,0119 1.2353 BW 
F3 0.1371 -0.8506 -0.0158 1.0049 -0.0014 0.6096 DBW 

TABLE 5. Energy budget for equation (8.2) evaluated on the most unstable mode at labelled points 
in figure 13. A is the dimensional wavelength based on the most unstable mode. 

Points ,4 I-D B, B,  B, (cm) Flow region in the chart 

1 0.1690 -0.8327 0.0035 1.2220 -0.2238 13.4382 Slugs 
2 J DCAF L 

V 

stable 
A 3 > DCAF 

4 60854 -0.9150 -0.0126 1.0085 0.0002 0.2887 DBW 

TABLE 6. Energy budget for equation (8.2) evaluated on the most unstable mode at labelled points 
in figure 15. A is the dimensional wavelength based on the most unstable mode. 

8.1.2. Downjlow 
For downflow, we compare theory and experiment a t  four arbitrarily chosen points 

on the downflow chart in figure 15. The flows at  points in the DCAF region are 
essentially PCAF as the theory predicts (see table 6). Point 4 in the region of 
disturbed bamboo waves is unstable to interfacial friction. Point 1 in the region of 
slugs is also unstable to interfacial tension. This gives perfect agreement a t  all four 
points. 

8.2. Comparison of linear theory with experiment for $xed values of V ,  and a 
We remarked that the discrepancy between the theoretical and measured values of 
c in table 3 was due to the sweeping out of trapped water between the crests of 
bamboo waves leading to a reduced water fraction. To check this idea, we decided to 
compute stability results when V,  is prescribed as in the experiment and a = a, is 
given by experiment. This ideas is completely consistent with results shown in 
parentheses in table 3. The energy decomposition shown in parentheses in table 4 is 
also completely Consistent with the idea that bamboo waves are produced by 
interfacial friction. 
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We carried out a similar computation, with V,, a, prescribed, but with parameters 
appropriate to pure oil. We got agreement between theory and experiments even 
though the oil used in the experiments is not the one used in the theory. In fact many 
results are insensitive to small changes of viscosity when the water fraction is fixed. 

9. Summary and discussion 
We have reported the results of experiments on water-lubricated pipelining of 

6.01 P cylinder oil in a vertical apparatus with up- and downflow. The measurements 
were compared with theoretical predictions based on ideal laminar flow (PCAF) and 
with the linear theory of stability. Flow rates for the oil and water, pressure gradients 
and holdup ratios for up- and downflow over a wide range of velocities less than 3 ft/s 
were recorded. 

The oil is buoyed up in water by gravity. In upflow the pressure gradient and 
buoyancy are in the same direction. Waves develop in upflow and the lubrication 
forces together with the buoyancy tend to stretch wave troughs. In downflow the 
pressure gradient and buoyancy are opposed. This compresses the oil column, 
suppresses bamboo waves, and leads to  straight or buckled columns of oil. The 
differences between up- and downflow are suppressed in fast flow when the pressure 
gradient dominates buoyancy. The stretching of oil in upflow and its compression in 
downflow implies that less oil will accumulate in upflow than in downflow. It is 
possible to fluidize hugely long slugs of oil in downflow. 

The ratio of the input ratio to the volume ratio is called the holdup ratio h, which 
is one in a well-mixed flow and larger than one in a laminar lubricated flow without 
gravity. Buoyancy changes this; zero and even negative holdups are possible (see 
figure 19). 

Different types of flow were observed and located on flow charts in a (V,, Vo)-plane. 
The flow types change with the oil flow at  a fixed water flow. 

First we describe changes in upflow as the oil flow is increased. For slow oil flow with 
enough water, oil bubbles will form by capillary instability ; if the water flow is fast 
enough the large bubbles are torn apart, leaving o/w dispersions. When the water 
flow is slow enough to  support capillary bubbles, increasing oil flow will cause the 
bubbles to connect into longer structures, called slugs, which are like segments of 
bamboo with bamboo swells connected by long thin bamboo stems. Further increases 
in the oil flow cause the segments to connect into a definite bamboo train. The stems 
of the bamboo thicken and the distance between the cells decreases with increasing 
oil flow. Bamboo waves seem to be imperfect monochromatic waves with a very well- 
defined average length, speed and amplitude. Yet further increases in the oil 
throughput lead to much thicker and shorter stems and the bamboo crests become 
very jagged, irregularly not axisymmetric. These are called disturbed bamboo waves 
and, like bamboo waves, are robust regimes of upflow. 

In a certain region of the upflow chart, small water flow and large oil flow, the oil 
sticks to the wall. This is a flow-induced adhesion, and it can be reversed. This flow 
induced ‘change of adhesion’ results either in blockage with a loss of lubrication or 
in a three-layer configuration with oil on the outer wall, water in an annulus beneath 
and oil in the core. Our apparatus could not withstand the pressures needed to 
produce larger rates of oil flow than in the ones in which oil sticks to the wall. We 
believe that water-in-oil emulsions would arise if the oil flow could be increased. 

Now we describe downflow after the flow turns at the bend at the upper end of the 
pipe, first for high oil flows with disturbed bamboo waves in upflow and then as the oil 
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flow is decreased. When such waves are observed at high oil flow rates in upflow, they 
are also observed in downflow. However, their wavelengths are shorter in downflow 
because of stretching in upflow and compression in downflow. When the oil input is 
decreased the waves disappear, leading to DCAF. This flow can be almost a PCAF. 
At higher flow rates of oil, it is disturbed by immature bamboo waves, at lower flow 
rates by rotating buckled structures which we call corkscrews. At yet lower oil inputs 
the oil column will break into trains of long slugs and then into trains of large bubbles 
which sccm tied together by wake forces. 

For a fixcd flow of oil, there is an optimum flow rate of water for which the pressure 
gradient is a minimum. The minimum pressure gradient is in a region of bamboo 
waves in upflow and in a region of disturbed core-annular flow in downflow. The 
pressure gradients in downflow are less than in upflow. This shows that DCAF is more 
efficient than bamboo waves. 

Some new formulae for PCAF are derived and used to compare ideal lubrication 
theory with experiments and to obtain some measures of energy efficiency. To make 
the dynamic pressure gradient appear explicitly, it is necessary to take account of the 
overburden based on the composite water-oil density. There is no static solution of 
the PCAF problem, so that the treatment of hydrostatic gradients requires thought, 
and it leads to the decomposition of the governing equations in which the density 
appears only in terms of the density difference as expected. These equations are 
easily integrated and all quantities can be evaluated on this PCAF solution when two 
parameters, like flow input of oil and water, are prescribed. A theoretical formula for 
the holdup is derived and evaluated. We find the water fraction for the PCAF flow 
for which the oil flow is maximum when the pressure gradient is fixed. 

We compared measured pressure gradients with different ideal pressure gradients 
in five cases each of upflow and downflow. The pressure gradient required to move 
a given flow rate of 6.01 P oil is on average 200 times greater when there is no water 
lubrication. This improvement is roughly one-third of the ratio ,uu,/,uw = l/m. We can 
guess that drag reductions of the order p,/3pw are possible in a vertical pipeline. For 
a viscous crude oil, water lubrication would reduce the pressure gradient by a factor 
of more than 10000. 

We compared measured pressure gradients with the gradients required to move 
water alone with a flow rate equal to measured total flow, oil plus water. For laminar 
flow, the measured gradients in lubricated flow are roughly three times larger than 
the theoretical gradients required for laminar flow of water alone. However, a t  the 
given flow rates water would be in turbulent flow and the ratio of measured to 
theoretical values much closer to one. 

The measured values of the pressure gradient and water fraction were compared 
with theoretical values computed for PCAF with the same oil and water input. The 
computed water fraction expressed by the radius ratio a = RJR,  is larger than the 
mean values a,  = R,/R,,  measured in the experiments. This reduction in the water 
fraction in the experiments is due to the transport of water trapped between bamboo 
waves flushing out water, leaving a smaller water fraction behind. The computed 
pressure gradients in upflow a t  low oil flow rates is much smaller than measured 
values. This comparison has no significance because under these conditions the 
motive force of transport is buoyancy. At higher oil flow rates, the ratio of computed 
to measured pressure gradients is of order one, between 0.1 and 0.5. 

Theoretical and measured values of the water fraction and pressure gradients in 
downflow are very close. This shows that realized DCAF downflows - are practically 
optimally efficient, with pressure-gradient reductions of the same value as PCAF 
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with the same water fraction. This is because DCAP is a t  most a perturbation of 
PCAF. The measured gradients of pressure are not globally optimal, however, 
because there is another PCAF, with a different and best water fraction, for which 
the pressure gradient for a given flux of oil is minimum. 

We compared measured values of the speed and wavelength of bamboo waves with 
two different theoretical values computed from the linear theory of stability. First we 
compared all flows with the same oil and water input, the same V,  and V,, as in our 
experiments. In the second we compared all flows with the samc oil input and water 
fraction, the same V,  and a ,  where a was put equal to the measured value for that V,. 
The second comparison was introduccd to validate the following conclusion : the 
wave on a very viscous oil, which basically must travel with nearly uniform velocity 
(see figure 19), must be very nearly a standing wave, convected with the flow. A 
6.01 P oil is too viscous to support fast wave propagation. In every case, the 
computed wave speed c of the most unstable disturbance was nearly the same as the 
speed W of the oil core in the basic PCAF. 

The average wavelength of bamboo waves is slightly larger than the wavelength 
of the most unstable disturbance of a PCAF',, which is a PCAF with the same V, and 
V, as in the experiments and also of a PCAF,, which as a PCAF with the same V, and 
a as in the experiments. Nonlinear effects are responsible for stretching the stems of 
bamboo waves, explaining the small discrepancy between linear stability theory and 
experiments. 

There is a larger discrepancy between the measured and theoretical wave speeds 
for PCAF, with up to  three times faster speeds found in computations. We attribute 
this discrepancy to a systematic difference a-a ,  > 0 betwecn experiments and 
PCAF,. The wave speed must be greater for flows with more water because the oil 
core with superficial oil velocity V, has to rise faster when a is larger. Since the wave 
is convected with the oil, a comparison of computation with one a with another 
computation or experiment with another will give rise to a systematic discrepancy 
of the observed type. In  fact this systematic discrepancy disappears when the 
measured speeds are compared with the ones computed for the PCAF, which has the 
same a. 

We attempted to predict the flow types observed in expcriments by identifying the 
source of instability in the terms of the energy equations which we computed for the 
most dangerous disturbance of PCAF, and PCAF,. For PCAF, we found that in all 
cases in which oil bubbles and slugs in water were observed, the instability arises 
from the boundary through a combination of interfacial tension and interfacial 
friction. In the region where bamboo waves and disturbed bamboo waves were 
observed, only interfacial friction acts to produce instability either of PCAF, or of 
PCAF,. For PCAF,, analysis of downflows gives rise to the same satisfying 
identification of the sources of instability of slug flow and disturbed bamboo waves. 
I n  addition for the two arbitrarily chosen points near the centre of the DCAF, where 
nearly perfect coreannular flows are actually observed, the linear theory shows 
PCAF, to be stable. PCJ and Hu &, Joseph ( 1 9 8 9 ~ )  showed that in all cases where 
oil-in-water dispersions were observed, instability of PCAF arises from the Reynolds 
stress in the water, and not from terms a t  the boundary. We did not observe o/w 
dispersion in the experiments and no term with a Reynolds-stress-induced instability 
was identified in the theory. 

Future work correlating stability calculations with experiments using more 
viscous and less viscous oils in vertical flow ought to be undertaken. It is especially 
important to build a robust apparatus in which the pressure gradients needed to 
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create o/w emulsions can be attained. The transition to o/w emulsions is a practical 
problem of considerable importance because it leads to a loss of lubrication in the 
field. 
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